
REST-Atomic Transactions
2.0 draft 8

Version created 29 July 2013

Editors
Mark Little (mlittle@redhat.com)

1
1

2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

32
33

34
35

36

37

2

Abstract

A common technique for fault-tolerance is through the use of atomic transactions, which have the
well know ACID properties, operating on persistent (long-lived) objects. Transactions ensure that
only consistent state changes take place despite concurrent access and failures. However,
traditional transactions depend upon tightly coupled protocols, and thus are often not well suited
to more loosely coupled Web based applications, although they are likely to be used in some of
the constituent technologies. It is more likely that traditional transactions are used in the minority
of cases in which the cooperating services can take advantage of them, while new mechanisms,
such as compensation, replay, and persisting business process state, more suited to the Web are
developed and used for the more typical case.

2

3
4

38

39
40
41
42
43
44
45
46
47
48

5

Table of contents

1 Note on terminology... 4

2 REST-Atomic Transaction..5

2.1 Relationship to HTTP..5

2.2 Header linking... 5

2.3 The protocol.. 5

2.3.1 Two-phase commit..6

2.3.2 State transitions...7

2.3.3 Client and transaction interactions...8
2.3.3.1 Creating a transaction...8

2.3.3.2 Obtaining the transaction status...9

2.3.3.3 Terminating a transaction..10

2.3.4 Transaction context propagation..11

2.3.5 Coordinator and participant interactions..11
2.3.5.1 Enlisting a two-phase aware participant...11

2.3.5.2 Enlisting a two-phase unaware participant...12

2.3.5.3 Obtaining the status of a participant...13

2.3.5.4 Terminating a participant...13

2.3.6 Recovery...14

2.3.7 Pre- and post- two-phase commit processing...15

2.3.8 Statuses.. 16

3 Security Model... 17

4 Security Considerations...18

5 References... 19

6

49

50

51

52

53

54

55

56

57

58

59

60

61

62
63

64

65

66

67

68

69

70

71

72

73

7

1 Note on terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [1].
Namespace URIs of the general form http://example.org and http://example.com represents
some application-dependent or context-dependent URI as defined in RFC 2396 [2].

4

8

74

75
76
77
78
79
80
81

9

http://example.org/
http://example.com/

2 REST-Atomic Transaction
Atomic transactions are a well-known technique for guaranteeing consistency in the presence of
failures [3]. The ACID properties of atomic transactions (Atomicity, Consistency, Isolation, and
Durability) ensure that even in complex business applications consistency of state is preserved,
despite concurrent accesses and failures. This is an extremely useful fault-tolerance technique,
especially when multiple, possibly remote, resources are involved.

Examples of coordinated outcomes include the classic two-phase commit protocol, a three phase
commit protocol, open nested transaction protocol, asynchronous messaging protocol, or
business process automation protocol. Coordinators can be participants of other coordinators.
When a coordinator registers itself with another coordinator, it can represent a series of local
activities and map a neutral transaction protocol onto a platform-specific transaction protocol.

2.1 Relationship to HTTP
This specification defines how to perform Atomic transactions using REST principles. However, in
order to provide a concrete mapping to a specific implementation, HTTP has been chosen.
Mappings to other protocols, such as JMS, is possible but outside the scope of this specification.

2.2 Header linking
Relationships between resources will be defined using the Link Header specification [4].

2.3 The protocol
The REST-Atomic Transactions model recognizes that HTTP is a good protocol for
interoperability as much as for the Internet. As such, interoperability of existing transaction
processing systems is an important consideration for this specification. Business-to-business
activities will typically involve back-end transaction processing systems either directly or indirectly
and being able to tie together these environments will be the key to the successful take-up of
Web Services transactions.

Although traditional atomic transactions may not be suitable for all Web based applications, they
are most definitely suitable for some, and particularly high-value interactions suchh as those
involved in finance. As a result, the Atomic Transaction model has been designed with
interoperability in mind. Within this model it is assumed that all services (and associated
participants) provide ACID semantics and that any use of atomic transactions occurs in
environments and situations where this is appropriate: in a trusted domain, over short durations.

Note, this specification only defines how to accomplish atomic outcomes between participations
within the scope of the same transaction. It is assumed that if all ACID properties are required
then C, I and D are provided in some way outside this scope of this specification. This means that
some applications MAY use the REST-Atomic Transaction purely to achieve atomicity.

The following diagram illustrates the various components defined within this protocol. We shall
discuss each of these in the remainder of this specification.

5

10

82

83
84
85
86
87
88
89
90
91
92
93

94

95
96
97

98

99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

11

2.3.1 Two-phase commit

The ACID transaction model uses a traditional two-phase commit protocol [3] with the following
optimizations:

• Presumed rollback: the transaction coordinator need not record information about the
participants in stable storage until it decides to commit, i.e., until after the prepare phase
has completed successfully. A definitive answer that a transaction does not exist can be
used to infer that it rolled back.

• One-phase: if the coordinator discovers that only a single participant is registered then it
SHOULD omit the prepare phase.

• Read-only: a participant that is responsible for a service that did not modify any
transactional data during the course of the transaction can indicate to the coordinator
during prepare that it is a read-only participant and the coordinator SHOULD omit it from
the second phase of the commit protocol.

Participants that have successfully passed the prepare phase are allowed to make autonomous
decisions as to whether they commit or rollback. A participant that makes such an autonomous
choice must record its decision in case it is eventually contacted to complete the original
transaction. If the coordinator eventually informs the participant of the fate of the transaction and
it is the same as the autonomous choice the participant made, then there is obviously no
problem: the participant simply got there before the coordinator did. However, if the decision is
contrary, then a non-atomic outcome has happened: a heuristic outcome, with a corresponding
heuristic decision.

The possible heuristic outcomes are:
• Heuristic rollback: the commit operation failed because some or all of the participants

unilaterally rolled back the transaction.
• Heuristic commit: an attempted rollback operation failed because all of the participants

unilaterally committed. This may happen if, for example, the coordinator was able to
successfully prepare the transaction but then decided to roll it back (e.g., it could not
update its log) but in the meanwhile the participants decided to commit.

• Heuristic mixed: some updates were committed while others were rolled back.
• Heuristic hazard: the disposition of some of the updates is unknown. For those which are

known, they have either all been committed or all rolled back.

6

12

123

124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

13

2.3.2 State transitions

A transaction (coordinator and two-phase participant) goes through the state transitions shown
below. Note that non-atomic (heuristic) outcomes are not show on the diagram for simplicity, but
are discussed in a later section:

There is a new media type to represent the status of a coordinator and its participants:
application/txstatustxstatus., which supports a return type based on the scheme maintained at
www.rest-star.org/… For example:

tx-statustxstatus=TransactionActive

The EBNF definition of this media type is:

<applicaton/txstatus> ::= "tx-statustxstatus" "=" <tx-state>
 <tx-state> ::=
 "TransactionRollbackOnly" |
 "TransactionRollingBack" |
 "TransactionRolledBack" |
 "TransactionCommitting" |
 "TransactionCommitted" |
 “TransactionCommittedOnePhase”
 "TransactionHeuristicRollback" |
 "TransactionHeuristicCommit" |
 "TransactionHeuristicHazard" |
 "TransactionHeuristicMixed" |
 "TransactionPreparing" |
 "TransactionPrepared" |
 "TransactionActive" |
 “ TransactionStatusUnknown”

The text media type for a list of transactions (application/txlist) is simply a comma separated list
of transaction URLs. In EBNF:

7

14

157

158
159
160

161
162
163
164

165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

15

 transaction url list ::= url { "," url}*
 <url> ::= see RFC 1738

2.3.3 Client and transaction interactions

The transaction manager is represented by a URI (referred to as the transaction-manager URI).
In the rest of this specification we shall assume it is http://www.fabrikam.com/transaction-
manager, but it could be any URI and its role need not be explicitly apparent within the structure
of the URI.

2.3.3.1 Creating a transaction

Performing a POST on /transaction-managerthe transaction-manager URI with header as shown
below will start a new transaction with a default timeout. A successful invocation will return 201
and the Location header MUST contain the URI of the newly created transaction resource, which
we will refer to as transaction-coordinator in the rest of this specification. At least two related
URLs MUST also be returned, one for the terminator of the transaction to use (typically referred
to as the client) and one used for registering durable participation in the transaction (typically
referred to as the server). These are referred to as the transaction-terminator and transaction-
enlistment URIs, respectively. Although uniform URL structures are used in the examples, these
linked URLs can be of arbitrary format.

Note, an implementation MAY use the same URL for the terminator and participants.

POST /transaction-manager HTTP/1.1
From: foo@bar.com

The corresponding response would be:

HTTP 1.1 201 Created
Location: /transaction-coordinator/1234
Link:</transaction-coordinator/1234/terminator>;
rel=”terminator”,
Link:</transaction-coordinator/1234/participant>;
rel=”durable- participant”,
Link:</transaction-coordinator/1234/vparticipant>;
rel=”volatile -participant”

An implementation MAY return a Link reference for volatile participants if it supports the
OPTIONAL volatile two-phase commit protocol, which is described later in this specification.

Note, the coordinator does not have to be co-located with the transaction manager resource, nor
does it need to have the same URL prefix.

Performing a HEAD on the transaction-coordinator URI MUST return the same link information.

HEAD /transaction-coordinator/1234 HTTP/1.1
From: foo@bar.com

8

16

187
188
189

190

191

192
193
194
195

196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

17

HTTP/1.1 200 OK
Link:</transaction-coordinator/1234/terminator>;
rel=”terminator”,
Link:</transaction-coordinator/1234/participant>;
rel=”durable -participant”,
Link:</transaction-coordinator/1234/vparticipant>;
rel=”volatile -participant”

Performing a POST on the transaction-manager URI as shown below will start a new transaction
with the specified timeout in milliseconds.

POST /transaction-manager HTTP/1.1
From: foo@bar.com
Content-Type: text/plain
Content-Length: --

timeout=1000

If the transaction is terminated because of a timeout, the resources representing the created
transaction are deleted. All further invocations on the transaction-coordinator or any of its related
URIs MAY return 410 if the implementation records information about transactions that have
rolled back, (not necessary for presumed rollback semantics) but at a minimum MUST return 404.
The invoker can assume this was a rollback.

A failure during the POST request, such as a network partition, may mean that the initial
response is not received. In this situation a client can retry the POST. Multiple transaction
coordinators may be created as a result, but the client SHOULD only use one of them and the
others will eventually timeout.

Performing a GET on the /transaction-manager URI with media type application/txlist returns a
list of all transaction -coordinator URIs known to the coordinator (active and in recovery). The
returned response MAY include a link header with rel attribute "statistics" linking to a resource
that contains statistical information such as the number of transactions that have committed and
aborted. The link MAY contain a media type hint with value “application/txstatusext+xml”.

Performing a GET on the transaction-manager URI with media type application/txstatusext+xml
returns extended information about the transaction-manager resource such as how long it has
been up and all transaction-coordinator URIs.

2.3.3.2 Obtaining the transaction status

Performing a GET on the transaction-coordinator URI/transaction-coordinator/1234 returns the
current status of the transaction, as described later.

GET /transaction-coordinator/1234 HTTP/1.1
Accept: application/txstatus

With an example response:

9

18

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

273

274
275
276
277
278
279
280

19

HTTP/1.1 200 OK
Content-Length: --
Content-Type: application/txstatus
Link:</transaction-coordinator/1234/terminator>;
rel=”terminator”,
</transaction-coordinator/1234/participant>;
rel=”durable-participant”,
</transaction-coordinator/1234/vparticipant>;
rel=”volatile-participant”

tx-statustxstatus=TransactionActive

Performing a DELETE on any of the transaction-coordinator or transaction-enlistment URIs
/transaction-coordinator URIs will return a 403.

Additional information about the transaction, such as the number of participants and their
individual URIs, MAY be returned if the client specifies the application/txstatusext+xml and the
implementation supports that type, otherwise status 415 is returned (as per RFC 2616)..

2.3.3.3 Terminating a transaction

The client can PUT one of the following to the transaction-terminator URI /transaction-
coordinator/1234/terminator in order to control the outcome of the transaction; anything else
MUST return a 400 (unless the terminator and transaction URLs are the same in which case GET
would return the transaction status as described previously). Performing a PUT as shown below
will trigger the commit of the transaction. Upon termination, the resource and all associated
resources are implicitly deleted. For any subsequent PUT invocation, such as due to a
timeout/retry, then an implementation MAY return 410 if the implementation records information
about transactions that have rolled back, (not necessary for presumed rollback semantics) but at
a minimum MUST return 404. The invoker can assume this was a rollback. In order for an
interested party to know for sure the outcome of a transaction then it MUST be registered as a
participant with the transaction coordinator.

PUT /transaction-coordinator/1234/terminator HTTP/1.1
From: foo@bar.com
Content-Type: application/txstatus
Content-Length: --

tx-statustxstatus=TransactionCommitted

The response body MAY contain the transaction outcome. If the transaction no longer exists then
an implementation MAY return 410 if the implementation records information about transactions
that have rolled back, (not necessary for presumed rollback semantics) but at a minimum MUST
return 404.

The state of the transaction MUST be TransactionActive for this operation to succeed. If the
transaction is in an invalid state for the operation then the implementation MUST return a 412
status code. Otherwise the implementation MAY return 200 or 202 codes. In the latter case the
Location header SHOULD contain a URI upon which a GET may be performed to obtain the

10

20

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

300

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

21

transaction outcome. It is implementation dependent as to how long this URI will remain valid.
Once removed by an implementation then 410 MUST be returned.

The transaction may be told to rollback with the following PUT request:

PUT /transaction-coordinator/1234/terminator HTTP/1.1
From: foo@bar.com
Content-Type: application/txstatus
Content-Length: --

tx-statustxstatus=TransactionRolledBack

2.3.4 Transaction context propagation

When making an invocation on a resource that needs to participate in a transaction, either the
transaction-coordinator URI or the enlistingtransaction-enlistment URI (e.g., /transaction-
coordinator/1234/participant) needs to be transmitted to the resource. This specification does not
mandate a mechanism for propagation of this context information to the resource. However, the
following OPTIONAL approaches are recommended.

•The URI is passed as a Link with the relevant service interaction.

•Services participating in the transaction return a Link to the client that can be used to

register participation with the coordinator.

Note, a server SHOULD only use the URIs it is given directly and not attempt to infer any others.

2.3.5 Coordinator and participant interactions

Once a resource has the transaction or enlistment URI, it can register participation in the
transaction. Each participant must be uniquely identified to the transaction in order that the
protocol can guarantee consistency and atomicity in the event of failure and recovery. The
participant is free to use whatever URI structure it desires for uniquely identifying itself; in the rest
of this specification we shall assume it is /participant-resource and refer to it as the participant-
resource URI.

2.3.5.1 Enlisting a two-phase aware participant

A participant is registered with the /transaction-coordinator using POST on the participant Link-
enlistment URI obtained when the transaction was created originally. The request must include
two link headers: one to uniquely identify the participant to the coordinator and one to provide a
terminator resource (referred to as the participant-terminator URI) that the coordinator will use to
terminate the participant. If the rel attributes of the link are not participant and terminator
the implementation must return 400. Note, the following URIs are only examples, and an
implementation is free to use whatever structure/format it likes:

POST /transaction-coordinator/1234/participant HTTP/1.1
From: foo@bar.com
Link:</participant-resource>; rel=”participant”,
</participant-resource/terminator>; rel=”terminator”

11

22

329
330
331
332
333
334
335
336
337
338
339

340

341
342
343
344
345
346

347

348
349
350
351

352

353
354
355
356
357
358

359

360
361
362
363
364
365
366
367
368
369
370
371
372

23

mailto:foo@bar.com

Content-Length: 0

Performing a HEAD on a registered participantthe participant-resource URI MUST return the
terminator reference, as shown below:

HEAD /participant-resource HTTP/1.1
From: foo@bar.com

HTTP/1.1 200 OK
Link:</participant-resource/terminator>;
rel=”terminator”

If the transaction is not TransactionActive when registration is attempted, then the implementation
MUST return a 412 status code. If the implementation has seen this participant URI before then it
MUST return 400. Otherwise the operation is considered a success and the implementation
MUST return 201 and SHOULD use the Location header to give a participant specific URI that
the participant MAY use later during prepare or for recovery purposes. The lifetime of this URI is
the same as the transaction-coordinator URI /transaction-coordinator. In the rest of this
specification we shall refer to this URI as the participant-revcovery URI /participant-recovery (not
to be confused with the /participant-resource URI) although the actual format is implementation
dependent.

HTTP/1.1 201 Created
Location: /participant-recovery/1234

2.3.5.2 Enlisting a two-phase unaware participant

In order for a participant to be enlisted with a transaction it MUST be transaction aware to fulfill
the requirements placed on it to ensure data consistency in the presence of failures or concurrent
access. However, it is not necessary that a participant be modified such that it has a terminator
resource as outlined previously: it simply needs a way to tell the coordinator which resource(s) to
communicate with when driving the two-phase protocol. This type of participant will be referred to
as Two-Phase Unaware, though strictly speaking such a participant or service does need to
understand the protocol as mentioned earlier.

Note, enlisting two-phase unaware participants is an OPTIONAL part of the specification. An
implementation that does not support this MUST return 405.

During enlistment a service MUST provide URIs for prepare, commit, rollback and OPTIONAL
commit-one-phase:

POST /transaction-coordinator/1234/participant HTTP/1.1
From: foo@bar.com
Link:</participant-resource>; rel=”participant”,
</participant-resource/prepare>; rel=”prepare”,
</participant-resource/commit>; rel=”commit”,
</participant-resource/rollback>; rel=”rollback”,
</participant-resource/commit-one-phase>; rel=”commit-
one-phase”

12

24

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

398

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

25

Content-Length: 0

Performing a HEAD on a registered participant URI MUST return these references, as shown
below:

HEAD /participant-resource HTTP/1.1
From: foo@bar.com

HTTP/1.1 200 OK
Link:</participant-resource/prepare>; rel=”prepare”,
Link:</participant-resource/commit>; rel=”commit”,
Link:</participant-resource/rollback>; rel=”rollback”,
</participant-resource/commit-one-phase>; rel=”commit-
one-phase”

A service that registers a participant MUST therefore either define a terminator relationship for
the participant or the relationships/resources needed for the two-phase commit protocol.

2.3.5.3 Obtaining the status of a participant

Performing a GET on the /participant-resource URIL MUST return the current status of the
participant in the same way as for the /transaction-coordinator URI discussed earlier. Determining
the status of a participant whose URI has been removed is similar to that discussed for the
/transaction-coordinator URI.

GET /participant-resource/1234 HTTP/1.1
Accept: application/txstatus

With an example response:

HTTP/1.1 200 OK
Content-Length: --
Content-Type: application/txstatus

tx-statustxstatus=TransactionActive

2.3.5.4 Terminating a participant

The coordinator drives the participant through the two-phase commit protocol by sending a PUT
request to the participant terminator URI provided during enlistment, with the desired transaction
outcome as the content (TransactionPrepared, TransactionCommitted, TransactionRolledBack or
TransactionCommittiedOnePhase). For instance, here is how the prepare phase would be driven:

PUT /participant-resource/terminator HTTP/1.1
From: foo@bar.com
Content-Type: application/txstatus

13

26

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

456

457
458
459
460
461
462
463
464

27

Content-Length: --

tx-statustxstatus=TransactionPrepared

If PUT is successful then the implementation MUST return 200. A subsequent GET on the URI
will return the current status of the participant as described previously. It is not always necessary
to enquire as to the status of the participant once the operation has been successful.

If PUT fails, e.g., the participant cannot be prepared, then the implementation MUST return 409.
It is implementation dependentdependant as to whether the /participant-resource or related URIs
remain valid, i.e., an implementation MAY delete the resource as a result of a failure. Depending
upon the point in the two-phase commit protocol where such a failure occurs the transaction
MUST be rolled back, e.g., because we use presumed abort semantics, failures prior to the end
of the prepare phase MUST result in a roll back. If the participant is not in the correct state for the
requested operation, e.g., TransactionPrepared when it has been already been prepared, then
the implementation MUST return 412.

If the transaction coordinator receives any response other than 200 for Prepare then the
transaction MUST rollback.

After a request to change the resource state using TransactionRolledBack,
TransactionCommitted or TransactionCommittedOnePhase, any subsequent PUT request MUST
return a 409 or 410 code.

Note, read-only MAY be modeled as a DELETE request from the participant to the coordinator
using the URI returned during registration in the Location header, as mentioned previously, i.e.,
the /participant-recovery URI. If GET is used to obtain the status of the participant after a 200
response is received to the original PUT for Prepare then the implementation MUST return 410 if
the participant was read-only.

The usual rules of heuristic decisions apply here (i.e., the participant cannot forget the choice it
made until it is told to by the coordinator).

Performing a DELETE on the /participant-resource URI will cause the participant to forget any
heuristic decision it made on behalf of the transaction. If the operation succeeds then 200 MUST
be returned and the implementation MAY delete the resource; a subsequent PUT or GET request
MUST return 410. Any other response means the coordinator MUST retry.

2.3.6 Recovery

In general it is assumed that failed actors in this protocol, i.e., coordinator or participants, will
recover on the same URI as they had prior to the failure. HTTP provides a number of options to
support temporary or permanent changes of address, including 301 (Moved Permanently) and
307 (Temporary Redirect). If that is not possible then these endpoints SHOULD return a 301
status code or some other way of indicating that the participant has moved elsewhere. HTTP
response codes such as 307 MAY also be used by the implementation if a temporary redirection
is used.

However, sometimes it is possible that a participant may crash and recover on a different URI,
e.g., the original machine is unavailable, or that for expediency it is necessary to move recovery
to a different machine. In that case it may be that transaction coordinator is unable to complete
the transaction, even during recovery. As a result this protocol defines a way for a recovering
server to update the information maintained by the coordinator on behalf of these participants.

If the recovering participant uses the /participant-recovery URI returned by the coordinator during

14

28

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

29

enlistment then a GET on the /participant-recovery URI will return the participant resource and
terminator as link headers the original participant URI supplied whenthat the the participant was
registeredused during the original registration.

Performing a PUT on the /participant-recovery URI will overwrite the old participant URI with the
new one supplied. This operation is equivalent to re-enlisting the participant. This will also trigger
off a recovery attempt on the associated transaction using the new participant URI. For example
to update location URIs, a two phase aware participant would PUT the following document:

PUT /participant-recovery/1234 HTTP/1.1
From: foo@bar.com
Link:</new-participant-resource>; rel=”participant”,
</participant-resource/new-terminator>;
rel=”terminator”
Content-Type: text/plain
Content-Length: --0

new-address=URI

Similarly for a two phase unaware participant.

If, after performing the PUT request to the participant-recovery URI, the participant is not asked to
complete (within an implementation dependent period) then it SHOULD reissue the PUT request.

2.3.7 Pre- and post- two-phase commit processing

Most modern transaction processing systems allow the creation of participants that do not take
part in the two-phase commit protocol, but are informed before it begins and after it has
completed. They are called Synchronizations, and are typically employed to flush volatile
(cached) state, which may be being used to improve performance of an application, to a
recoverable object or database prior to the transaction committing.

This additional protocol is accomplished in this specification by supporting an additional two-
phase commit protocol that enclosed the protocol we have already discussed. This will be termed
the Volatile Two Phase Commit protocol, as the participants involved in it are not required to be
durable for the purposes of data consistency, whereas the other protocol will be termed the
Durable Two Phase Commit protocol. The coordinator MUST not record any durable information
on behalf of Volatile participants.

In this case the Volatile prepare phase executes prior to the Durable prepare where the
transaction-coordinator sends a PUT request to the registered volatile-participant: only if this
prepare succeeds will the Durable protocol be executed. The volatile-participant MUST indicate
success by returning a 200 status code (any other code indicates failure). If the Durable protocol
completes then this MAY be communicated to the Volatile participants through the commit or
rollback phases. In this case the transaction-coordinator sends a PUT request to the registered
volatile-participant with with the outcome in the request body (using content type
application/txstatus). However, because the coordinator does not maintain any information about
these participants and the Durable protocol has completed, this SHOULD be a best-effort
approach only, i.e., such participants SHOULD NOT assume they will be informed about the
transaction outcome. If that is a necessity then they should register with the Durable protocol
instead.

15

30

518
519
520
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

31

mailto:foo@bar.com

The Volatile protocol is identical to the Durable protocol described already. The only differences
are as discussed below:

• It is an OPTIONAL protocol. An implementation that supports the protocol MUST show this
when the transaction is created through a Link relationship: it returns an additional Linked
resource whose relationship is defined as “volatile -participant”. Services MUST use this
URI when registering volatile participants.

• There is no recovery associated with the Volatile protocol. Therefore the /participant-
recovery URI SHOULD NOT be used by an implementation.

• There can be no heuristic outcomes associated with the Volatile protocol.
• An implementation MAY allow registration in the Volatile protocol after the transaction has

been asked to terminate as long as the Durable protocol has not started.
• There is no one-phase commit optimization for the Volatile protocol.

2.3.8 Statuses

Resources MUST return the following statuses by performing a GET on the appropriate
/transaction-coordinator or participant URI:

• TransactionRollbackOnly: the status of the endpoint is that it will roll back eventually.
• TransactionRollingBack: the endpoint is in the process of rolling back. If the recipient has

already rolled back then it MUST return a 410 error code.
• TransactionRolledBack: the endpoint has rolled back.
• TransactionCommitting: the endpoint is in the process of committing. This does not mean

that the final outcome will be Committed. If the recipient has already committed then it
MUST return a 410 error code.

• TransactionCommitted: the endpoint has committed.
• TransactionCommittedOnePhase: the recipient has committed the transaction without

going through a prepare phase. If the recipient has previously been asked to prepare
then it MUST return a 412 error code. If the recipient has already terminated, then it
MUST return a 410 error code.

• TransactionHeuristicRollback: all of the participants rolled back when they were asked to
commit.

• TransactionHeuristicCommit: all of the participants committed when they were asked to
rollback.

• TransactionHeuristicHazard: some of the participants rolled back, some committed and the
outcome of others is indeterminate.

• TransactionHeuristicMixed: some of the participants rolled back whereas the remainder
committed.

• TransactionPreparing: the endpoint is preparing.
• TransactionPrepared: the endpoint has prepared.
• TransactionActive: the transaction is active, i.e., has not begun to terminate.
• TransactionStatusUnknown: the status of the transaction is unknown

The statuses are also used to drive the two-phase commit protocol as discussed previously.

16

32

568
569
570
571
572
573
574
575
576
577
578
579
580

581

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

33

3 Security Model
The security model for atomic transactions builds on the standard HTTP security model. That is,
services have policies specifying their requirements and requestors provide claims (either implicit
or explicit) and the requisite proof of those claims. Coordination context creation establishes a
base secret which can be delegated by the creator as appropriate.

Because atomic transactions represent a specific use case rather than the general nature of
coordination contexts, additional aspects of the security model can be specified.

All access to atomic transaction protocol instances is on the basis of identity. The nature of
transactions, specifically the uncertainty of systems means that the security context established
to register for the protocol instance may not be available for the entire duration of the protocol.
Consider for example the scenarios where a participant has committed its part of the transaction,
but for some reason the coordinator never receives acknowledgement of the commit. The result
is that when communication is re-established in the future, the coordinator will attempt to confirm
the commit status of the participant, but the participant, having committed the transaction and
forgotten all information associated with it, no longer has access to the special keys associated
with the token.

There are, of course, techniques to mitigate this situation but such options will not always be
successful. Consequently, when dealing with atomic transactions, it is critical that identity claims
always be proven to ensure that coordinators maintain correct access control.

There is still value in coordination context-specific tokens because they offer a bootstrap
mechanism so that all participants need not be pre-authorized. As well, it provides additional
security because only those instances of an identity with access to the token will be able to
securely interact with the coordinator (limiting privileges strategy).

The "list" of authorized participants ensures that application messages having a coordination
context are properly authorized since altering the coordination context ID will not provide
additional access unless (1) the bootstrap key is provided, or (2) the requestor is on the
authorized participant "list" of identities.

17

34

610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

35

4 Security Considerations
It is strongly RECOMMENDED that the communication between services be secured using HTTP
security mechanisms. In order to properly secure messages, the body and all relevant headers
need to be included in the signature. In the event that a participant communicates frequently with
a coordinator, it is RECOMMENDED that a security context be established
.
It is common for communication with coordinators to exchange multiple messages. As a result,
the usage profile is such that it is susceptible to key attacks. For this reason it is strongly
RECOMMENDED that the keys be changed frequently. This "re-keying" can be effected a
number of ways. The following list outlines four common techniques:

• Attaching a nonce to each message and using it in a derived key function with the shared
secret

• Using a derived key sequence and switch "generations"

• Closing and re-establishing a security context (not possible for delegated keys)

• Exchanging new secrets between the parties (not possible for delegated keys)

It should be noted that the mechanisms listed above are independent of the SCT and secret
returned when the coordination context is created. That is, the keys used to secure the channel
may be independent of the key used to prove the right to register with the activity.

Note, the content of Link header fields is not secure, private or integrity-guaranteed, and due
caution should be exercised when using it. Use of Transport Layer Security (TLS) with HTTP [5]
and [6]) is currently the only end-to-end way to provide such protection.

18

36

642

643
644
645
646
647
648
649
650
651

652
653

654
655
656
657
658
659
660
661
662
663

37

5 References
[1] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard
University, March 1997.
[2] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding,
L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.
[3] J. N. Gray, “The transaction concept: virtues and limitations”, Proceedings of the 7th VLDB
Conference, September 1981, pp. 144-154.
[4] M. Nottingham, “HTTP Header Linking”, http://www.mnot.net/drafts/draft-nottingham-http-link-
header-07.txt, June 2006.
[5] http://tools.ietf.org/html/rfc2818
[6] http://tools.ietf.org/html/rfc2817

19

38

664

665
666
667
668
669
670
671
672
673
674

39

http://tools.ietf.org/html/rfc2818

	1 Note on terminology
	2 REST-Atomic Transaction
	2.1 Relationship to HTTP
	2.2 Header linking
	2.3 The protocol
	2.3.1 Two-phase commit
	2.3.2 State transitions
	2.3.3 Client and transaction interactions
	2.3.3.1 Creating a transaction
	2.3.3.2 Obtaining the transaction status
	2.3.3.3 Terminating a transaction

	2.3.4 Transaction context propagation
	2.3.5 Coordinator and participant interactions
	2.3.5.1 Enlisting a two-phase aware participant
	2.3.5.2 Enlisting a two-phase unaware participant
	2.3.5.3 Obtaining the status of a participant
	2.3.5.4 Terminating a participant

	2.3.6 Recovery
	2.3.7 Pre- and post- two-phase commit processing
	2.3.8 Statuses

	3 Security Model
	4 Security Considerations
	5 References

